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ABSTRACT 
An effective method for removal of noises in Electroencephalogram was developed and evaluated. This noise is 

called artifacts in EEG signal. The method targets most types of artifacts and works without user interaction. 

The method uses the neurophysiologic model of EEG signal and an iterative Bayesian estimation scheme. 

Artifact removal algorithm effectively removes artifacts from EEGs and improves the quality of EEG signal 

impaired by artifacts. Only in rare cases did the algorithm slightly attenuate EEG patterns, but the clear visibility 

of significant patterns was preserved. Artifact removal methods work either semi-automatically or with 

insufficient reliability for clinical use, whereas the clean EEG method works fully automatically and leaves true 

EEG patterns unchanged with a high reliability. The artifact removal algorithm removes noise with less amount 

of time. Here the classification of EEG bands are considered for effective monitoring of human brain. 
 

KEYWORDS: Electroencephalogram, Artifacts, Bayesian Estimation, Neurophysiological model 

  

1. INTRODUCTION 
The electroencephalogram (EEG) is an important tool in the diagnosis of neurological disorders and the 

investigation of the functional properties of the brain. Unfortunately, EEG recordings are commonly 

contaminated by artifacts(noise), potentials that do not originate from the brain but from various other 

sources.Artifacts are classified into Physiological and  Non-physiologic artifacts originate from various sources 

of electrical fields causing interference in the frequency band of EEGs. These sources include mains electricity 

noise at a frequency of 50 or 60 Hz, depending on the geographic region. Electric fields in external electronic 
devices, like mobile phones or implanted devices, like cardiac pacemakers also cause interference at frequencies 

relevant for EEGs. High-amplitude artifacts are often due to electromechanic machines, such as ventilators, 

feeding or infusion pumps or intravenous drips. 

 
The most common artifacts are caused by a faulty electrical connection of the electrodes and the skin of the 

patient, which is frequently a problem in long-term recordings. Patient movements often temporarily 

compromise this electrode- skin connection, giving rise to complex artifacts in the EEG. A second large group 

of artifacts have a physiologic origin. These comprise in particular ocular artifacts due to eye blinks and eye 

movements, which can be recognized by their characteristic waveforms and potential distributions in the EEG or 

by co-registration of an electrooculogram. Temporalis and frontal is muscles are the major source of myogenic 

artifacts, which may completely obscure an EEG recording due to their broad frequency spectrum and high 
amplitudes. Artifacts with a physiological origin also include cardiac artifacts, which can be identified by their 

correlation with the electrocardiogram, and also artifacts due to a cranial bone defect causing the breach effect. 

 

The major contribution of this article is a completely novel approach proposed for fully automatic artifact 

removal, called clean EEG. The major intention of the proposed method is to support the visual analysis of long-

term EEG recordings. Clean EEG rejects numerous types of artifacts that frequently obscure long-term 

recordings and impede their interpretation. More precisely, it targets artifacts that do not coincide with a spatio-

temporal correlation pattern of an EEG of cerebral origin, which particularly includes artifacts due to myogenic 

contractions, faulty electrode-to-patient connections, patient movements and most non-physiologic sources.The 

method works fully automatically and without any patient-individual parameter adjustments, which also makes 
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it well adapted as a preprocessor for all types of computational EEG analyses, such as electrical source imaging, 

automatic spike and seizure detection, or evoked potential analyses. 

 

The algorithm is based on a neurophysiological signal model, which includes one term representing the clean 

EEG, which originates from cerebral sources only, and one term representing a wide range of artifacts. The 

model characterizes spatio-temporal correlations of the EEG and utilizes a Bayesian minimum mean squared 

error (MMSE) estimator for the separation of pure EEG components and artifactual components. An effective, 

iterative procedure is proposed for the critical characterization of a priori knowledge required by Bayesian 

estimators. In contrast to conventional frequency filtering, which operates in the spectral domain, and methods 

like Independent Component Analysis and Principal Component Analysis, which operate in the spatial domain, 

the approach separates the clean EEG and the artifacts in the spatio-spectral domain. The advantage is a high 

degree of freedom, which allows artifacts to be more accurately isolated and more precisely separated from the 
EEG, with only very low distortions of the clean EEG components. 

 

2. RELATED WORKS 
The generation of cerebral potentials is based on the intrinsic electrophysiological properties of the nervous 

system. Identifying the generator source and electrical field of propagation are the basis for recognizing 

electrographic patterns that underlay the expression of the “brain waves” as normal or abnormal. Most common 

EEGs recorded at the surface of the scalp represent pooled electrical activity generated by large numbers of 

neurons. 

 
Electrical signals are generated when electrical charges move within the central nervous system. Neural function 

is maintained by ionic gradients established by neuronal membranes. Sufficient duration and length of small 

amounts ie,in micro Volt unit of electrical currents of cerebral activity are required to be amplified and 

displayed for interpretation. A resting membrane potential normally exists through the efflux of positive-

charged (potassium) ions maintaining an electrochemical equilibrium of –75 mV. With depolarization, an influx 

of positive-charged (sodium) ions that exceeds the normal electrochemical resting state occurs. Channel opening 

within the lipid bilayer is through a voltage-dependent mechanism, and closure is time dependent. 

 

Conduction to adjacent portions of the nerve cell membranes results in an action potential when the 

depolarization threshold is exceeded. However, it is the synaptic potentials that are the most important source of 

the extracellular current flow that produces potentials in the EEG. Excitatory postsynaptic potentials (EPPs) 
flow inwardly (extracellular to intracellular) to other parts of the cell via sodium or calcium ions. Inhibitory 

post-synaptic potentials (IPPs) flow outwardly (intracellular to extracellular) in the opposite direction (source), 

and involve chloride or potassium ions. These summed potentials are longer in duration than action potentials 

and are responsible for most of the EEG waveforms. 

 

The brainstem and thalamus serve as subcortical generators to synchronize populations of neocortical neurons in 

both normal (i.e., sleep elements) and in abnormal situations (i.e., generalized spike-and-wave complexes).   

Layers of cortical neurons are the main source of the EEG. Pyramidal cells are the major contributor of the 

synaptic potentials that make up EEG. These neurons are arranged in a perpendicular orientation to the cortical 

surface from layers III, IV, and VI. Volumes large enough to allow measurement at the surface of the scalp 

require areas that are >6 cm2 , although probably >10 cm2 are required for most IEDs to appear on the scalp 

EEG because of the attenuating properties incurred by the skull. All generators have both a positive and 
negative pole that function as a dipole.  

 

Scalp EEG recording displays the difference in electrical potentials between two different sites on the head 

overlying cerebral cortex that is closest to the recording electrode. During frequent use, electrical potentials are 

acquired indirectly from the scalp surface and incorporate waveform analyses of frequency, voltage, 

morphology, and topography. Most of the human cortex is buried deep beneath the scalp surface, and 

additionally represents a two-dimensional projection of a three-dimensional source, presenting a problem for 

generator localization in scalp EEG. The waveforms that are recorded from the scalp represent pooled 

synchronous activity from large amount of neurons. That will create the cortical potentials and may not 

represent small interictal or ictal sources. 

3. METHODS 
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We use a set of electrodes, the recording is taken by placing  the electrodes on the scalp. With the help of a  

conductive gel or paste, usually after preparing the scalp area by light abrasion to reduce impedance due to dead 

skin cells. Many systems typically use electrodes. The electrodes are attached to a wire. Some systems use caps 

or nets into which electrodes are embedded. This is used when high-density arrays of electrodes are needed. 

 

Electrode locations are different. Electrode names are specified by the International 10–20 system for most 

clinical and research applications. The system ensures that the naming of electrodes is consistent across 

laboratories. In most clinical applications, 19 recording electrodes are used. A smaller number of electrodes are 

used when recording EEG from neonates. Additional electrodes can be added to the standard set-up when a 

clinical/research application demands increased spatial resolution for a particular area of the brain. High-density 

arrays can contain up to 256 electrodes more-or-less evenly spaced around the scalp. 

 
Each electrode is connected to one input of a differential amplifier (one amplifier per pair of electrodes).A 

common system reference electrode is connected to the other input of each differential amplifier. The amplifiers 

amplify the voltage between the active electrode and the reference (typically 1,000–100,000 times, or 60–100 

dB of voltage gain). In analog EEG, the signal is then filtered, and the EEG signal is output as the deflection of 

pens as paper passes underneath. Most EEG systems , are digital, and the amplified signal is digitized via an 

analog-to-digital converter, after being passed through an anti-aliasing filter. Analog-to-digital sampling occurs, 

typically at 256–512 Hz in clinical scalp EEG; sampling rates of up to 20 kHz are used in some research 

applications. During the recording, a chain of activation procedures may be used. These activities may induce 

normal or abnormal EEG activity. The procedures include hyperventilation, photic stimulation , eye closure, 

mental activity, sleep and sleep deprivation. During epilepsy monitoring, a patient's typical seizure medications 

may be withdrawn. 
 

The digital EEG signal is stored electronically. It can be filtered for display. The value for the high-pass filter 

and a low-pass filter are 0.5–1 Hz and 35–70 Hz respectively. The high-pass filter  filters out slow artifact, such 

as electrogalvanic signals and movement artefact.The low-pass filter filters out high-frequency artifacts, such as 

electromyographic signals. An additional band stop or notch filter is typically used to remove artifact caused by 

electrical power lines (60 Hz in the United States and 50 Hz in many other countries). 

 

The EEG signals can be available with an open source hardware such as Open BCI . The signal can be 

processed by freely available software such as EEGLAB or the Neurophysiological Biomarker Toolbox. As part 

of an evaluation for epilepsy surgery, it may be necessary to insert electrodes near the surface of the brain .It is 

placed under the surface of the dura mater. This is called variously as Electrocorticography (ECoG), 

"intracranial EEG (I-EEG)" or "subdural EEG (SD-EEG)". Depth electrodes may also be placed into brain 
structures, such as the amygdala or hippocampus, structures, which are common epileptic foci and may not be 

visible clearly by scalp EEG. The electrocorticographic signal is processed in the same manner as digital scalp 

EEG, with a couple of caveats. ECoG is typically recorded at higher sampling rates than scalp EEG because of 

the requirements of Nyquist theorem the subdural signal is composed of a higher predominance of higher 

frequency components. Many of the artifacts that affect scalp EEG do not impact ECoG.The display filtering is 

often not needed. 

 

An adult human EEG signal is in the range of 10 μV to 100 μV in amplitude when measured from the scalp and 

is about 10–20 mV when measured from subdural electrodes. Typically an EEG voltage signal represents a 

difference between the voltages at two electrodes. The display of the EEG for the reading encephalographer may 

be set up in one of several ways. The method, clean EEG, is based on a stochastic, spatio-temporal model for 
EEGs, which are impaired by artifacts. The model includes K channels of digital EEG recordings, represented 

by length-K EEG vectors e(t) with discrete time indices t. The EEG vectors e(t) are decomposed into a 

superposition of three components, 

 

e(t) = ej (t) + ea(t) + n(t)                     (i) 

 

Where the clean EEG vectors ej(t) represent ‘‘true EEG’’ contributions from cerebral sources, the EEG artifact 

vectors ea(t) represent artifactual contributions caused by various types of artefact sources, and the noise vectors 

n(t) contain noise due to amplification and analog-to-digital conversion and residual modeling errors.The clean 
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EEG artefact separation algorithm is based on a linear minimum mean square error (MMSE) estimator. This 

type of estimators requires a priori Knowledge of second-order moments of observations and parameters to be 

estimated: it seems to be an obvious assumption, that the three components pure EEG ej, artifacts a, and noise n 

are uncorrelated, meaning that their covariance is zero. Furthermore, it can be assumed, due to common high-

pass filters inconventional EEG recording hardware, that all components are also zero-mean. 

 

The full characterization of second-order moments in equation (1) would include all spatial and temporal cross- 

correlations, given by Cej (t, t_).1 However, this would lead to a computationally expensive MMSE estimator 

that could be hardly calculated in an acceptable amount of time for commonly used sampling rates and channel 

numbers. A significant reduction in complexity can be achieved, if the EEG is transformed into the frequency 

domain denoted by ˆe (v) _ _e (v). We used a discrete cosine transform, which for real-valued EEG has the 

advantage to be real- valued in the transform domain. Certainly, a discrete Fourier transform could also be used, 
which led to very similar results in our experiments. 

 

The frequency transform can be applied in the context of the overlap-add method,such that all assumptions and 

approximations must be valid only within each window separately. We applied the overlap add method using 

Hamming windows and a distance of 1.5 seconds between succeeding frames The linearity of allows to 

transform each component separately, i.e., (1) can be written in the frequency domain as ˆe (v) = ˆej (v) + ˆea (v) 

+ n (v). In the frequency domain, we assume that spectral cross-correlations are approximately zero, i.e.. For 

discrete cosine transforms, this assumption would be exact for 1st-order Markov processes and asymptotically 

exact for finite-order Markov processes. These are equivalent to processes obtained from autoregressive models, 

which have frequently been used in EEG signal processing methods. Due to this simplification, the statistical 

characterization reduces to knowledge of covariance matrices Cˆej (v) for the pure EEG vectors, Cˆea (v) for the 
EEG artifact vectors, and Cˆn (v) for the noise vectors. The 16 channel EEG signal with artifacts is given below 

in Fig.1. 

 

Characterization of the clean EEG component ej can be based either on artefact free EEG data or on a suitable 

data model. Artifact free data can be cut into a sufficient number of samples and transformed into frequency 

domain in order to calculate, e.g., sample covariance matrices. It is possible to calculate specific covariance 

matrices for each individual subject, or averaged covariance matrices by mixing data samples from different 

subjects. 

 

4. RESULTS 
The clean EEG ej, can be separated from artifacts ea using a linear minimum mean square 

error(MMSE)estimator, which might be the most important type of Bayesian estimators. The linear MMSE 

estimator e*j (t) minimizes the mean squared error. 

 
ε = E {{ || e*j (t) − ej (t)||}}2           (ii) 

 

due to the assumption of uncorrelated clean EEG ej, artifacts a, and noise n, it can be written as,  

 

e*j (t) = f+ (CˆejCe-1 e ) (t)             (iii) 
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Fig.1.: EEG signal with noise/artifacts 

 

with an inverse frequency transform denoted by _+ (·), the frequency domain EEG vector ê(v) and its 
correlation matrix given by the sum.  

 

Cˆe (v) = Cˆej (v) + MCˆa (v)MT + I           (iv) 

 

Where Cˆej from equation () have been used. In a similarly way, a linear MMSE estimator for the artifacts a can 

be shown to be  

 

a∗ (t) = f+ (Cˆa (v)MTC−1 ˆe) (t)                  (v) 

  

An estimator for the artefact vector ea can easily be calculated via multiplication with the montage matrix M. 
However, in the following subsection, we will make use of estimates for the artifact sources a directly rather 

than their effect on the EEG. 

 

The mean squared error measures the average of the squares of the errors.The average squared difference 

between the estimated values and what is estimated. Mean square error is a risk function. It is corresponding to 

the expected value of the squared error loss. The mean square error is almost always strictly a positive value,not 

zero because of randomness or because the estimator does not account for information that could produce a 

more accurate estimate. The mean square error is a measure of the quality of an estimator .It is always 

nonnegative, and values closer to zero are better. 

 

The mean squared error is the second order moment  of the error. It incorporates both the variance of the 

estimator and its bias .For an unbiased estimator, the mean squared error is the variance of the estimator. Like 
the variance, mean squared error has the same units of measurement as the square of the quantity being 

estimated. In an analogy to standard deviation, taking the square root of mean square error yields the root mean 

square error (RMSE) or root mean square deviation (RMSD), which has the same units as the quantity being 

estimated; for an unbiased estimator, the root mean square is the square root of the variance, known as the 

standard error. 

           

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  ISSN: 2277-9655 

[NACETEC' 19]  Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [41] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License. 

 
Fig.2.: EEG Signal without Artifacts 

 
The Electroencephalogram is described in terms of rhythmic activity and transient activity. The rhythmic 

activity is divided into certain frequency bands. These frequency bands are a matter of nomenclature .For 

example,any rhythmic activity between 8–12 Hz can be described as "alpha". The designations arose because 

rhythmic activity within a certain frequency range was noted to have a certain distribution over the scalp or a 

certain biological significance.Frequency bands are usually extracted using spectral methods as implemented for 

instance in freely available EEG software such as EEGLAB or the Neurophysiological Biomarker 

Toolbox.Computational processing of the EEG is often named Electroencephalography. 
 

 
Fig.3.: EEG Frequency bands 

 

Most of the cerebral signal observed in the scalp EEG falls in the range of 1–20 Hz (activity below or above this 

range is likely to be artifactual, under standard clinical recording techniques). EEG waveforms are subdivided 

into mainly 4 bandwidths known as alpha, beta, theta and delta to signify the majority of the EEG used in 

clinical practice. 
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5. CONCLUSIONS 
The clean EEG artifact removal algorithm effectively removes artifacts from EEGs and improves the readability 

of EEGs impaired by artifacts. Clean EEG is a valuable tool for EEG artifact removal, which reliably preserves 

significant EEG patterns from cerebral sources and removes numerous types of artifacts, including myogenic 

artifacts, electrode artifacts, movement artifacts or line noise. A computationally efficient implementation of the 

algorithm makes it a viable alternative or extension to commonly used post hoc frequency filtering in EEG 

review software,also effectively plotted the different frequency bands of clean EEG signal and compared the 

performance. The method is very usefull for medicinal purposes to monitor the functionality of human brain. 

The method is very efficient in all category irrespective of the age. 
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